Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Redox Biol ; 71: 103094, 2024 May.
Article in English | MEDLINE | ID: mdl-38479221

ABSTRACT

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Subject(s)
Antioxidants , Sulfhydryl Compounds , Sulfhydryl Compounds/metabolism , Antioxidants/metabolism , Transferases/metabolism , Oxidation-Reduction , Glutathione/metabolism , Oxidoreductases/metabolism , Disulfides/chemistry
2.
Evol Hum Behav ; 43(6): 527-535, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36217369

ABSTRACT

The COVID-19 pandemic caused drastic social changes for many people, including separation from friends and coworkers, enforced close contact with family, and reductions in mobility. Here we assess the extent to which people's evolutionarily-relevant basic motivations and goals-fundamental social motives such as Affiliation and Kin Care-might have been affected. To address this question, we gathered data on fundamental social motives in 42 countries (N = 15,915) across two waves, including 19 countries (N = 10,907) for which data were gathered both before and during the pandemic (pre-pandemic wave: 32 countries, N = 8998; 3302 male, 5585 female; M age  = 24.43, SD = 7.91; mid-pandemic wave: 29 countries, N = 6917; 2249 male, 4218 female; M age  = 28.59, SD = 11.31). Samples include data collected online (e.g., Prolific, MTurk), at universities, and via community sampling. We found that Disease Avoidance motivation was substantially higher during the pandemic, and that most of the other fundamental social motives showed small, yet significant, differences across waves. Most sensibly, concern with caring for one's children was higher during the pandemic, and concerns with Mate Seeking and Status were lower. Earlier findings showing the prioritization of family motives over mating motives (and even over Disease Avoidance motives) were replicated during the pandemic. Finally, well-being remained positively associated with family-related motives and negatively associated with mating motives during the pandemic, as in the pre-pandemic samples. Our results provide further evidence for the robust primacy of family-related motivations even during this unique disruption of social life.

4.
Sci Data ; 9(1): 499, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974021

ABSTRACT

How does psychology vary across human societies? The fundamental social motives framework adopts an evolutionary approach to capture the broad range of human social goals within a taxonomy of ancestrally recurring threats and opportunities. These motives-self-protection, disease avoidance, affiliation, status, mate acquisition, mate retention, and kin care-are high in fitness relevance and everyday salience, yet understudied cross-culturally. Here, we gathered data on these motives in 42 countries (N = 15,915) in two cross-sectional waves, including 19 countries (N = 10,907) for which data were gathered in both waves. Wave 1 was collected from mid-2016 through late 2019 (32 countries, N = 8,998; 3,302 male, 5,585 female; Mage = 24.43, SD = 7.91). Wave 2 was collected from April through November 2020, during the COVID-19 pandemic (29 countries, N = 6,917; 2,249 male, 4,218 female; Mage = 28.59, SD = 11.31). These data can be used to assess differences and similarities in people's fundamental social motives both across and within cultures, at different time points, and in relation to other commonly studied cultural indicators and outcomes.

5.
Front Cell Neurosci ; 15: 739425, 2021.
Article in English | MEDLINE | ID: mdl-34720880

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H2O2-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1ß cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions.

6.
Perspect Psychol Sci ; 15(1): 173-201, 2020 01.
Article in English | MEDLINE | ID: mdl-31791196

ABSTRACT

What motives do people prioritize in their social lives? Historically, social psychologists, especially those adopting an evolutionary perspective, have devoted a great deal of research attention to sexual attraction and romantic-partner choice (mate seeking). Research on long-term familial bonds (mate retention and kin care) has been less thoroughly connected to relevant comparative and evolutionary work on other species, and in the case of kin care, these bonds have been less well researched. Examining varied sources of data from 27 societies around the world, we found that people generally view familial motives as primary in importance and mate-seeking motives as relatively low in importance. Compared with other groups, college students, single people, and men place relatively higher emphasis on mate seeking, but even those samples rated kin-care motives as more important. Furthermore, motives linked to long-term familial bonds are positively associated with psychological well-being, but mate-seeking motives are associated with anxiety and depression. We address theoretical and empirical reasons why there has been extensive research on mate seeking and why people prioritize goals related to long-term familial bonds over mating goals. Reallocating relatively greater research effort toward long-term familial relationships would likely yield many interesting new findings relevant to everyday people's highest social priorities.


Subject(s)
Family Relations , Goals , Interpersonal Relations , Reward , Sexual Behavior , Social Behavior , Adult , Cross-Cultural Comparison , Female , Humans , Male , Middle Aged , Young Adult
7.
Mol Cell Biochem ; 461(1-2): 91-102, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31375973

ABSTRACT

Peroxiredoxins (Prdxs) are antioxidant enzymes that catalyse the breakdown of peroxides and regulate redox activity in the cell. Peroxiredoxin 5 (Prdx5) is a unique member of Prdxs, which displays a wider subcellular distribution and substrate specificity and exhibits a different catalytic mechanism when compared to other members of the family. Here, the role of a key metabolic integrator coenzyme A (CoA) in modulating the activity of Prdx5 was investigated. We report for the first time a novel mode of Prdx5 regulation mediated via covalent and reversible attachment of CoA (CoAlation) in cellular response to oxidative and metabolic stress. The site of CoAlation in endogenous Prdx5 was mapped by mass spectrometry to peroxidatic cysteine 48. By employing an in vitro CoAlation assay, we showed that Prdx5 peroxidase activity is inhibited by covalent interaction with CoA in a dithiothreitol-sensitive manner. Collectively, these results reveal that human Prdx5 is a substrate for CoAlation in vitro and in vivo, and provide new insight into metabolic control of redox status in mammalian cells.


Subject(s)
Coenzyme A/metabolism , Peroxiredoxins/metabolism , Protein Processing, Post-Translational , Animals , DNA Mutational Analysis , HEK293 Cells , Humans , Male , Oxidants/pharmacology , Oxidative Stress/drug effects , Peroxidase/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Stress, Physiological/drug effects
8.
J Res Adolesc ; 29(2): 449-465, 2019 06.
Article in English | MEDLINE | ID: mdl-29570890

ABSTRACT

This study examines how student perceptions of teacher practices contribute to female high school students' math beliefs and achievement. Guided by the expectancy-value framework, we hypothesized that students' motivation beliefs and achievement outcomes in mathematics are fostered by teachers' emphasis on the relevance of mathematics and constrained by gender-based differential treatment. To examine these questions, structural equation modeling was applied to a longitudinal panel of 518 female students from the Maryland Adolescent Development in Context Study. While controlling for prior achievement and race, gendered differential treatment was negatively associated with math beliefs and achievement, whereas relevant math instruction was positively associated with these outcomes. These findings suggest inroads that may foster positive math motivational beliefs and achievement among young women.


Subject(s)
Academic Success , Attitude , Culture , Mathematics , Women/psychology , Adolescent , Female , Humans , School Teachers , Self Report
9.
Biochem J ; 475(11): 1909-1937, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29626155

ABSTRACT

In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of Staphylococcus aureus gene products were shown to be CoAlated in response to diamide-induced stress. In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide. These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.


Subject(s)
Antioxidants/metabolism , Bacterial Proteins/metabolism , Coenzyme A/metabolism , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Coenzyme A/genetics , Diamide/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Oxidation-Reduction , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics
18.
Monogr Soc Res Child Dev ; 82(4): 7-28, 2017 12.
Article in English | MEDLINE | ID: mdl-29130252

ABSTRACT

In this monograph, we investigate the developmental trajectories of a predominantly middle-class, community-based sample of European American and African American adolescents growing up in urban, suburban, and rural areas in Maryland, United States. Within risk-protection and positive youth development frameworks, we selected developmental measures based on the normative tasks of adolescence and the most widely studied indicators in the three major contexts of development: families, peer groups, and schools. Using hierarchical linear growth models, we estimated adolescents' growth trajectories from ages 12 to 20 with variation accounted for by socioeconomic status (SES), gender, race/ethnicity, and the gender by race/ethnicity interaction. In general, the results indicate that: (a) periods of greatest risk and positive development depended on the time frame and outcome being examined and (b) on average, these adolescents demonstrated much stronger evidence of positive than problematic development, even at their most vulnerable times. Absolute levels of their engagement in healthy behaviors, supportive relationships with parents and friends, and positive self-perceptions and psychological well-being were much higher than their reported angry and depressive feelings, engagement in risky behaviors, and negative relationships with parents and peers. We did not find evidence to support the idea that adolescence is a time of heightened risk. Rather, on average, these adolescents experienced relatively stable and developmentally healthy trajectories for a wide range of characteristics, behaviors, and relationships, with slight increases or decreases at different points in development that varied according to domain. Developmental trajectories differed minimally by SES but in some expected ways by gender and race/ethnicity, although these latter differences were not very marked. Overall, most of the young people navigated through their adolescence and arrived at young adulthood with good mental and physical health, positive relationships with their parents and peers, and high aspirations and expectations for what their future lives might hold.


Subject(s)
Adolescent Development , Black or African American/psychology , White People/psychology , Academic Success , Adolescent , Family Characteristics , Humans , Personal Satisfaction , Problem Behavior , Social Environment , Social Identification
20.
Biochem J ; 474(14): 2489-2508, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28341808

ABSTRACT

Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration. Using an anti-CoA monoclonal antibody and mass spectrometry, we identified a wide range of cellular proteins which are modified by covalent attachment of CoA to cysteine thiols (CoAlation). We show that protein CoAlation is a reversible post-translational modification that is induced in mammalian cells and tissues by oxidising agents and metabolic stress. Many key cellular enzymes were found to be CoAlated in vitro and in vivo in ways that modified their activities. Our study reveals that protein CoAlation is a widespread post-translational modification which may play an important role in redox regulation under physiological and pathophysiological conditions.


Subject(s)
Coenzyme A/metabolism , Proteins/metabolism , Animals , Cysteine/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Kidney/metabolism , Liver/metabolism , Male , Myocardium/metabolism , Organ Specificity , Oxidation-Reduction , Oxidative Stress , Protein Processing, Post-Translational , Rabbits , Rats, Sprague-Dawley , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...